Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions
نویسندگان
چکیده
This paper investigates the existence of at least two positive solutions for the following high-order fractional semipositone boundary value problem (SBVP, for short) with coupled integral boundary value conditions: D0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1), D0+v(t) + λg(t,u(t), v(t)) = 0, t ∈ (0, 1), u(j)(0) = v(j)(0) = 0, j = 0, 1, 2, · · · ,n− 2, Dα−1 0+ u(1) = λ1 ∫η1 0 v(t)dt, Dα−1 0+ v(1) = λ2 ∫η2 0 u(t)dt, where n− 1 < α 6 n, n > 3, 0 < η1,η2 6 1, λ, λ1, λ2 are parameters and satisfy λ1λ2(η1η2) < Γ2(α+ 1), D0+ is the standard Riemann-Liouville derivative, and f,g are continuous and semipositone. By using the nonlinear alternative of Leray-Schauder type, Krasnoselskii’s fixed point theorems, and the theory of fixed point index on cone, we establish some existence results of multiple positive solutions to the considered fractional SBVP. As applications, two examples are presented to illustrate our main results. c ©2017 All rights reserved.
منابع مشابه
The Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملPositive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations
In this paper, we study the existence of positive solutions for a class of coupled integral boundary value problems of nonlinear semipositone Hadamard fractional differential equations Du(t) + λf(t, u(t), v(t)) = 0, Dv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e), λ > 0, u(1) = v(1) = 0, 0 ≤ j ≤ n− 2, u(e) = μ ∫ e 1 v(s) ds s , v(e) = ν ∫ e
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملMultiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions
In this paper, we consider four-point coupled boundary value problem for systems of the nonlinear semipositone fractional differential equation
متن کاملHigher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017